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1. INTRODUCTION

1.0 O0BJECTIVE

The primary objective of this study is to develop the Finite Element
Method (FEM) for electromagnetic techniques to solve the problem of
transient scattering directly in the time domain. The techniques will
then be applied to compute the time-dependent currents induced on curved

wthin wires due to an arbitrary incident plan wave pulse. Special cases
of this are straight thin wires and Gaussian pulse.

1.1 Relevance of the Study

Transient electromagnetic response of structures such as strategic
weapon systems and strategic command, communication and control systems to
a nuclear electromagnetic pulse are of great concern from the point of
view of their vulnerability and survival. Again, the importance of tran-
sient response cannot be overstated in radar target identification, elec-
tronic warfare and electronic countermeasures. For example, the impulse
response can give a useful characterization of each radar target since
such a response contains all necessary radar information in a compact and
understandable form. Strategic systems should be designed to survive the
nuclear transients. Thus, an understanding of the response becomes manda-
tory to impact on and improve the designs of systems. Since the systems,
in general, are complicated structures, they can only be solved numeri-
cally; hence efficient and economical numerical techniques are required.
The method developed in this study is expected to offer such a tool.

The approach is based on a unique technique for the computation of
currents and fields on arbitrary structures excited by arbitrary sources.
This technique called "Finite Element Method for Electromagnetics (FEMEM)"
is predicated on a variational principle governing the physics of the
problem and an approximation procedure to carry out the variational
expression integration.
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1.2 A General Discussion of Transient Solutions

There are essentially two approaches for solving linear electro-
magnetic problems. One is an indirect approach in which the physics of
the problem is abstracted either by a differential or by an integral equa-
tion with frequency as the variable. The equations are solved in the fre-
quency domain and then the time domain solution is obtained by inverse
Fourier transform. In the other approach, the governing equations are
formulated and solved in the time domain.

In the time domain, the problem can be formulated either in terms
of differential or integral equation. From a numerical solution point of
view, the integral equation approach offers definite advantages over the
differential equation approach with respect to solution stability and
imposing boundary conditions.

1.3 The Finite Eiement Method in the Transient Domain

The finite element method has been successfully applied to a host
of static or steady state problems, including eigenvalue problems through-
out the many engineering disciplines. The extension of the method to
transient problems may be credited to Wilson and Nicke11[1] in their study
of the heat conduction equation. Most of the early papers in this area are
concerned with solutions to the diffusion equation in one form or another.
Although the wave equation has been considered generally by Oden[2] there
appears to be no specific solutions to this equation for transient prob-
lems. In general, three different approaches are used in solving the
time domain problem in conjunction with the FEM. They are:

(1) In this method, the transient solution is obtained by develop-
ing a recurrence relation with the ordinary finite element equations for
the problem and then time-stepping progressively. This technique will be
further discussed later.

(2) This method depends on the idea of incorporating the time
dimension directly into the finite element analysis as another one of the
unknown nodal degrees of freedom of the systems. In this manner, time is
discretized, as well as the spatial variables. Here the time span of

1-2




interest is divided into finite elements. Thus, the initial value prob-
lem is converted to a boundary value problem. Solutions for all intervals
of time are obtained simultaneously, with nodes on each wire or surface

t = constant defining the configuration of the system at that time. The
increase in problem size due to the added time dimension is a disadvantage.

(3) In this approach, the solution is obtained by the mode super-
position method. This technique is also known as the normal mode method
or as modal analysis. The basis of this method is that the modal matrix
of the eigenvalue problem can be used to diagonaiize the problem and thus
decouple the multiple degrees of freedom problem to give several one-
degrees of freedom problem.

One advantage of the mode superposition method over the direct
integration methods is that it reduces the number of equations to be
solved. Since the lower normal modes play a more significant role in the
response .than the higher modes, only the lower modes need to be used.

This method has the disadvantage of requiring the eigenvalue problem solu-
tion. Again, if the number of degrees of freedom is large, the eigenvalue
problem is difficult. Superposition method is applicable only to 1inear
problems. Thus, it transpires that the modal superposition method is less
general than the other two methods mentioned earlier.

However, it must be mentioned that the advantages inherent in the
finite element formulations can be profitably used in all three methods.
This report primarily concerns itself with the first method. The subse-
quent sections discuss the problem formulation, FEM methodology, code
development, numerical solutions, discusssions, and conclusion.

1-3
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2. MATHEMATICAL FORMULATION

2.0 FORMULATION OF THE VARIATIONAL INTEGRAL

The application of the FEM technique requires that we select the
proper variational principle for the posed problem, express the functional
involved in terms of approximate assumed current distribution functions
which satisfy the boundary conditions and minimize this functional to
obtain a set of governing equations which is then solved for the unknown
current distributions at the nodes.

v 4
S = |
o :
9§
E' (t) “
N F
9 @

Figure 2-1. Geometry of the Problem

The wire is {lluminated by a plane electromagnetic pulse Ei (t)
with arbitrary polarization and angle of incidence.

Here the relations will be developed for general validity. Then,
these will be specialized to the problem at hand. Let d (?,t) be the
induced current on the perfectly conducting structure. The boundary
condition applicable at the surface of a perfectly conducting body is
given by

nxtreanx B +E)eo0 (2-1)

- -> t - -Ps
where n is unit normal to the surface and E , E' and E” are the total,

T ——— SRR,




¥ 4 incident and scattered fields, respectively. This implies that the tan-
gential electric field is zero.

{ -
i% The variational form functional L(J) gove:ning the physics of the
' problem and containing the quantity of interest J is given by

4 L = £ £ IEt) - R (BFot) - T (rot) dr dr-
£
(2-2)
-sz (?,t) R & (¥,t) dr
S

4 r 5 =
%: where.jg and-fgldenote Cauchy principal value integrations over the struc-
| ture and dr and dr' differential elements. The Kernel E'(F.;',t) is a
E; complicated integro-differential operator and is given by
/\ == T
- o 1 o A a0 ? s-R 8K !
K("-Nt)"'ﬁ;{?s-s—;*ﬂo? 3. +l—'sR— at V.0, r't-%
()

0 A 4

' ¢ 2t 2-3
where §, S are the unit tangent vectors at r and r e

and s € and n, are free space permeatility, permittivity and imped-

->
ance, respectively; R = r- F', the vector distance between the observa-

]
tion point T and the source point F'; 7 - denotes the divergence operation

electric field integral equation

o - - L A3 /S\'E"
6L(~J)=’s‘.g1 (v,t) -%—;f in-°- s:s ;'Pno;f-v
S (2-4)
AE sn > >
+l_°';—3f dt-‘;'-s J(l".t) dr. .og T't’% .
° T

Now that the variational form is set for the problem, the remain-
der of the FEM technique is a procedure for rendering L(J) stationary by
using an expression for J.

MR e L AV

in the source coordinates; «t el e %-15 the retagﬁed time. It is easi1y: .
seen that the variation of L(J) with respect to J leads to the time domain
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2.1 Solution of the Variational Integral Equation by the Finite
Element Method

The FEM is primarily a numerical procedure for solving complex prob-
lems. The method was originally used in the field of structural mechanics;
but since its roots belong in mathematics as a class of approximation pro-
cedure, it can be applied to a wider variety of problems in other areas.

In the FEM, the region of interest is divided into sub-domains or finite
elements, with some functional representation of the solution being
adopted over the elements so that the parameters of the representation
become unknowns of the problems. Usually the element parameters are the
nodal values and their derivatives at the nodes. Although the region of
the problem is discretized into elements, the whole domain remains as a
continuum because of the imposed restriction on the continuity across ele-
ment interfaces. The mathematical procedure of solving (2-2) by the FEM
is discussed in the following sections.

2.1.1 Segmentation in the Space and Time Coordinates

Examination of Eq (2-2) shows that the source current at T delayed
by a time |F - ¥*|/c is affecting the current at the observation point F.
Because of this retardation effect, Eq (2-2) can be solved as an initial-
valued problem by us%ng a time marching procedure. This phenomenon can
best be visualized by considering the space-time diagram as shown in
Figure 2-2.
A

at

e

ct

SPACE

Figure 2-2. The Space-Time Diagram
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In the space-time diagram each dot represents a space-time point; the

solid lines are the characteristics of the wave equations and they separate
the past and the future. To divide the current into the space and time
coordinates, we expand the current in space and time as

-+ ST i R S
J (.3 ¥ Jyj (Fr vt = t) U(rt - ) U(E - ty)

1=1 j=1
1 f R 'F|<As e
-l
where u(r - ?1) = ? 2
b otherwise
(2-6)

A
1ot -tle 5
Ut -t - 2

0 otherwise

with ag and 4, s the spatial and temporal increments and J1j represents
the current value within the space segment i and time interval j. There-
fore if one postulates that the incident field and all surface current on
S are known or equal to zero for all time less than, say to, then

the retarded time effect allows us to start the solution at time to and
to view the integral equation as an initial-valued problem in a “marching
on" procedure in time.

2.1.2 The Subdivision of the Spatial Region (A Generalized Approach)

The region R is subdivided into discrete sub-regions or elements,
each of the same general form, as shown in Figure 2-3, with the boundaries
of each element being plane or curvilinear faces, and with the adjacent
boundaries of any pair of elements being coincident. Commonly used ele-
ments for surfaces are triangular or polygonal form. At similar positions
in each element, a number of points are identified as nodes. They are
generally at the vertices of the elements, and at positions such as the

center of an edge, the centroid of a face or the centroid of the element
volume.

Let us denote the nodal values of the solution ¢ at the pth node as
‘p‘ Let the number of elements into which region R is subdivided be Nt.

2-4
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and the total number of nodes in R = D + B (Boundary) be Ny and Ny - The
Total number of nodes in a single element be n Then the nodal values of

s
¢ can be generally expressed as a column vector
= -
%
$2
(e} =| ¢, (2-7)
d
‘nd+n
L o

2.1.3 The Element Shape Function

To solve Eq (2-2) by the FEM, one needs to define some shape func-
tions or interpolation functions. These functions allow us to express the
solution ¢ at any position of R in terms of only the nodal values {¢}.
Therefore, we assume that the solution ¢ can be described in functional
forms, element by element, across the region, i.e., can be defined piece-'
wise over the region. Within each element, it will be supposed that ¢ can
be described by a 1inear combination of functions Nle, Nze, 5 e Nke.

P Nse. and nodal values ¢1e, ¢2°. . e ¢k° & e s ¢s°. thus

- e e e e e ¢ e e e e
) ZQNI ¢, ~I~N2 4, +N3 ¢, +...Nk O 4-...+Ns b »

s #0152, « = N (2-8)
or, in matrix notation .
B0 D ol A S e B (2-9)
e
=D () (%) . (2-10)

e
Note that the superscript e is used here to identify a particular element.

The shape functions (N®) are restricted to being functions of posi-
tions. Since the true solution ¢ is prescribed as being continuous and

2-6
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with continuous derivatives (up to some order) across the region, the piece-
wise representation (2-10) should have the same properties. Therefore the
shape functions are restricted by the following conditions:

1. b0 = at the Jth node

J
2. = ( outside element e, with the jth node
as one of its nodes
3. = N(F¥), a position function within the elements.

In choosing the shape function, one has to pay attention to convergence in
the FEM. Since it 1s recognized that the FEM solution to a problem with a
given size of element is necessarily an approximation to the exact solu-

tion, there must be an assurance that successive finite element solutions
using smaller and smaller elements will converge smoothly to the exact
solution as the element size tends to a point. While comprehensive condi-
tions ensuring convergence are not yet known for all types of linear problems,
there are certain criteria that must be observed in order to obtain conver-
gent solutions:

(1) Completeness

This means that the piecewise representation (2-10) within the
element of the variable/derivative in a key integral must be capable of
representing any continuous function as the element size decreases.
Mathematically, the piecewise representation calls for a complete set of
functions such as a polynomial function with infinite number of terms.
However, in a FEM representation, only a finite number of terms is taken.
But as pointed out by Melosh [5] and by Zienkiewicz [6], a monotonic con-
vergence can still be obtained if the number of terms used in the repre-
sentation allow the variable/derivative up to and including order t to
take up any constant value within the element, where t being the highest-
order derivative of the variable in the variational functional.

(2) Compatibility

This means that the represantation of the variable/derivative in a
key integral of (2-4) must tend to the same continuity as the exact solu-
tion, across the inter-element boundaries, as the size decreases to a point.
If for a given variational functional, the highest-order derivative

2-7
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<» involved 1s of order n, the derivatives of order up to and including

E : (n-1) are known as the principal derivatives of that variable. Presuming
} that the exact solution of the dependent variables are continuous with
continuous derivatives up to at least order n. One weak requirement that
the compatibility criterion is satisfied is to require that the variable
and their principal derivatives are continuous in the shape function
representation. This means that the highest-order derivative in a key
integral will have a representation that is at worst piecewise continuous, ,
in which case the representation will tend to be continuous as the element ‘
reduces to a point. In general, completeness and compatibility are suffi-
cient conditions for convergence in variational finite element methods.

3 However, these conditions are very strong and can be relaxed [7]. In

@ practice, the shape functions will not be an exact representation of the
true solution, but an approximate one, and the solution obtained will be

E | similarly approximate. | 3

2.1.4 The Subdivision of the Functional

Since (2-2) represents essentially a quadratic function, we can

write it as
o= fD Fuouyotly -« « 5 ug) D, where (2-11)
i F(uuu oo .,uq)=a u 2+a u u +a _u u
i 123 1 1 USE R The LT B
? (2-12)
. 2 2
: T W Uy PR G T g

and D represents the domain of integration which can be a 1ine, surface or

volume, and Upslpally o o o Uy represent the solution ¢ and its various

derivatives, ¢ , gyr by + ¢ - - In matrix notation (2-11) becomes ! 4

oo f {u}T[A] {u} dD (2-13)
D

where [A] is a dxd matrix and {u} a dx] column vector, or

Ui %5p v v Oy

[A] = |32 22 2.d

adl adz e o o o .dd »

2-8
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(uy = |" (2-15)

s e N

Yq
—_

and superscript T denotes the transpose of a matrix.
matrix elements aij are functions of the position.

In general, the

If ¢® is the contribution of an element to the total integration in
(2-13), then this equation can be written as

£ £
023 =2 [ (A w e,
0
e

e=] e=]

(2-16)

where De represents the domain of element e, let us now consider a typical
term u. in{u}r=0,1,2, ... . . Bydefinition, u. is a spatial

derivative of ¢, that is u. = “!F = Dr¢. where er represents a. spatial

variable of concern. &

From (2-10) we have
u = (N®) {4%} in element e.
Thus within element e

u. =09 = (0. N%) 4%} = (U.°) (4%} (2-17)

where (Ure) represents the row vector for the r-derivative of the shape

function. So applying (2-17) for every element, we obtain
¢ {u} = (U) (4%} (2-18)
where % ol
@ e
By Dy My® Dy Mt .. .0, 0"
L0 SRS L : : (2-19)
2 e e e
Uy L?d A TS RS N 4
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-r Substitution of (2-18; into (2-13) yields
L
e =2 [ w7 17 (A1 (W] (6% oo, (2-20)
e=1"p
e
which shows that ¢ is now a function of the Ny nodal values 01. 02. S5 & s
b -
d

2.1.5 The Stationary Condition

In order to solve (2-20) we have to invoke the variational princi-
ple. The condition that ¢ is stationary is given by

0 _ 20 _ 3

- . » o o, % ¢ B cem— » -1
301 3¢, 34 . (2-21)

or
ao/ao1

ae/3¢,

A A s S A i

52%;T = . = {0} . (2-22) §

From (2-16) we get

E _{_}.go 3 s (2'23)

2.1.6 The Element Matrix Equation
To get the element matrix equation we have to combine (2-23) and ;

e
(2-20). Considering the term %%TT for an element e in (2-20), we get

20° 3 [ o7 rual e ]
= —— {6} [U)" [A] [u] (¢ }|dD_. (2-24)
2(s°) /;e e L 5 ; de

2-10
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Note that a term %%— will be zero unless p is one of the element nodes
P

i identified by 1, 2, . . . k, . . » s. Also note that the node identifiers
§' 1, 2, 3, . . , s are not the same as the system node numbers which are

: used to represent the total number of nodes in D. For example, if the
triangular element e has its three vertices identified in the system node
numbers as 7, 9, and 5, then we can let its node identifiers (now s = 3)
as 1 <> 7, 2+ 9 and 3 « 5. Therefore, the only elements in the column
vector that are non-zero are those that, in terms of element node identi-

fiers, are

20°  ae° 20° ! §
[} Lo <o & o . 1
3, ¥, 39 § 1

R e L T

So (2-22) reduces to

DA L S i SRS 4 & A e i

ao/a¢1e | §
3Qe & 80/3¢2e ; (2-25) ,
; 3 (4%} '
o ;
{ " :
' E 30/3¢°
Letting >
: (8] = [U]" [A] (U], (2-26) |
and using
vy (17 [ (v = 2[Q] v}, (2-27)
! we obtain from (2-24)
2o [ A 44 (2-28)
e’} YD, e ;
where [Al] is a s x s matrix .
Since (¢‘} is constant with respect to the integration we can write (2-28)
as
e
2« (2] (%) (2-29)
e}

2-N




[Al®) 'fo 2[A®] do,, (2-30)
e

If we substitute (2-19) into (2-24) and carry out the mathematics, we will
obtain for the ijt element of [8%] as

1 * e e e e
; b1j Jf 2 [Dxni (a11 D, Nj ta, 0, Nj * oo va, Dy Nj )

oooooooooooooooooo

e e e e
+Dd Ny (adl D1 NJ *+ay, D, Nj ooy, Dy Nj )]dl)e .
(2-31)

Note that in (2-31) the subscripts on the N® are in terms of the node
jdentifiers, not system node numbers.

Note that the shape functions are explicitly defined functions of
spatial variables. The integrand of a particular term, say

Jﬁe 2(0, N;%) 3,,(0,N5%) dDg

could be evaluated as an explicit function of x, y and z. If aij are con-
stant coefficients, the prescribed integration over the defined domain De
of the element would, in consequence, evaluate the term as a scalar. The
integration, if simple, could be carried out analytically. However, if °
3y are complex functions of x, y and z, then the integration would gener-
ally require a numerical solution. Therefore, the computational time
involved in a problem depends very much on whether ‘13 are simple or com-
plex functions.
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2.1.7 The Boundary Condition

It is known in boundary-value problems that the solution is not
unique unless it meets all the required boundary conditions. However, in
the variational finite element methods, if the specified boundary condi-
tions are natural boundary conditions for the problem, then it can be shown
that the class of admissible functions is not required to satisfy these.

In order to illustrate the treatment of the boundary condition in the
matrix equation (2-29) let us assume a Dirichlet boundary condition such
that

¢ = 9(x,y,z) on B. (2-32)

Using (2-32), the "y nodal values (¢p)B for the boundary nodes on B can be
calculated yielding Ny equations of the form

E % 9
!
E (0 'Y 0 9 0 9 oo 0 [ .' 'Y 0 9 e 0) ¢p 3 g (2‘33)
ﬁ .
; : :
% pth Position :
; .nb v » \
which implies that if ‘p satisfies the boundary condition and hence it is i
e |
a constant value, then %%— = 0 for an element containing node p. Thus to '

include the B.C. in the element matrix equation, the simplest procedure is

|
p |

!
to replace the pth row of the matrix [Al1®] in (2-29) by the row matrix of
(2-33). In other words, if p is a boundary-condition node, put zeros in
the pth row of the [A1®] in (2-29) except for a 1 in the diagonal position
and put in the pth row of the driving vector the boundary value given by

(2-32).
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3. THIN WIRE SCATTERING

3.0 APPLICATION OF THE FEM TO THE SCATTERING OF AN ARBITRARY

PULSE BY A THIN CONDUCTING WIRE

The geometry of the problem is given in Figure 3-1. A perfectly
conducting curved wire of length L and radius a is located in free space
with one of its ends at the origin of the Cartesian coordinates.

-7/ s=0
20/;\‘ ;>
(@) ~ (®)

Figure 3-1. (a) Geometry of Thin-Wire Scatterer
(b) Subdivision into Finite Elements

The wire is illuminated by an arbitrary plane electromagnetic pulse, Ei(t),
As shown in Figure 3-2 the direction of propagation and the polarization
of the incident pulse is defined by a triad (o, ¢, n) where o and ¢ are
the ordlnary angles in the spherical coordinates made by the propagation
vector k, and n is the polarization angle between the electric vector and

the plane of incidence. Since the wire is thin (§-<< 1), we can use the
thin-wire approximation and assume that the current flows only along the
orientation of the wire. The surface integration in (2.2) now becomes

a linear integration along the wire whose arc length is denoted by s, and
so the variational equation (2-2) for the thin-wire is reduced to:




3 . :muw.\-: 5

g 1

WP )

o i :

Figure 3-2. Orientation of the Incident Pulse.

To define the curved wire the following parametric equations are used:

X = fx (u)
y= 1 (u)
L (u)

whose derivatives with respect to u are:

x= g, (u)
ys= 9, (u)
z= 9_ (u)

4

3-2

(3-1)

o

(3-2)




FQ, . t) -// I(s,t) + K(s,s'st) + I(s",7) ds'ds
Bt

-2/ I (s.t) « E '(s.t) ds (3-3)
L
where

= 1 Y% A A noS-R 3

K(s,s',x) = - SS =t — v ¢t

. 0§ AT RS
WE s P e 5'3',/; e T B

(3-4)

and R -|f’-(s)-F'(s)[= ﬂr - r)? 4 a2
r(s) 1s position vector from the origin ta a paint with arc length s.
To convert the integral equation we first divide the curved wire into Ng
uniform segments with N" number of nodes, and then express the current at
any point lying inside a particular segment in terms of a shape function

and the nodal values of that segment. Thus from (2-4) we have, after drop-
ping the subscript s

N w
Ii(s'.t') =§§ I-ij (s' - sq» t' - tj) u(s' - s;) Ut - tj)

(3-5)
with  U(s' - s;) = { 2
0 otherwise
1§ g « g,) <5
ue - ) = { | sz
J 0 otherwise

where I1j represents the shape function at the 1th segment and the jth {

time interval. For a given time interval, say |t' - tkl ﬁ.%g j

113(5' = sy t' - tj) is a function of space only. Therefore we can express
the shape function Iij in terms of spatial coordinates.
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3.1 Spatial Shape Function

For the curved thin wire problem, we can represent the shape function
by a polynomial of s. Thus, for |t' - t .= At

k-1

I = s, t' - tj) =N +Ns + N352 .. %5, (3-6)

i5(s'

The coefficients Nk's are to be determined by the continuity requirement
across element boundaries. Since the variational equation (2-2) involves
first spatial derivative, it is necessary to use a polynomial of at least
second order in order to meet the completeness and compatibility require-
ments for convergence. Thus we let

2

external internal

node “‘~\\\\\\\\\\\ node

¢1 ¢2 ¢3

Figure 3-3. An Element with an Internal Node.

In order to determine NI, N2 and N, uniquely, we have to pick an internal
node in an element as shown in Figure 3-3, and require Erat

2
+ S S
Nl NZ 1 ia N3 1

©
—
"

2

o
~N
]

2
+ S S
o3 = Ny + NS, + N5,

2
or b = Ny 4 NS + NS, 121,23

where 4 is the nodal value of current at the ith node.

rd




We can write (3-8) in matrix notation as

-1
2
Ny i 5 ¢,
. 2 5
2
N, 1 S, S, ¢,
After some matrix algebra manipulation we get
Ny $,85(53-5,)  5153(5)-53)  515,(5,-5)) \ fé,
% iy 1L (57590 (5,#53) (55750 (5505,) (55,0 (5,#3,))f ¢,
S
N3 (53'52) (51'53) (Sl-sz) ‘3 ‘
(3-10)
where IS[ b (53' 52) (53-51) (52-51) . (3-1])
From Eq (3-7) through (3-11) we obtain for an element connecting the ith
and the (i + 1)th nodes
(im-s.)(si+]-5c) (si-s-)(si+]-s.)
[”(Sl-si, t"tj) = 5 + ¢ (3-12)
(559 (S447-5¢) (=5 (Sgaq=5p) ™
. (si-s-)(sm-s.) -
i+l
(Si'si+1)(sm'si+])
S_i -<-S' is'H’] 8

where the subscript m denotes the internal node. Although the internal
node can be placed at any position within the particular element, it is
usually located at the midpoint of that element.

3.2 Time Derivative and Integration Interpolation

Since the kernel of the variational integral equation (2-2) contains
also first time derivative, it is necessary to do temporal interpolation




over adjacent time intervals. A second-order Lagrangian interpolation is

g usually sufficient. Thus we let

i} Iij(s.-si’ t.-tj) - Iij(s'-si) U (t"tj)

A / ' '

3 (t 'tj)(t 'tj+])

| * R $, 51

3 (¢330 (8341-85.0)

)

1 (t'=ts ) (t'-ts,)

| L A ST (3-13)
L1 (tj_l‘tj)(tj_‘_]'tj)

J, | (et (et
1 (5 g-t5q) (Ej=tyep) Al

At At
bj-g stz e s,

where ‘ij represents the nodal current at the ith node at the jth time

interval.

To avoid extrapolation into the future, we have to interpolate the

current at the jth time step backwards to the j-1 and j-2 time steps when

R
Fo T 0.5 such that

e L e A
(t5q-ty. ) bty ) 1372

lij(s"si’ t'-tj) = Iij(s'-s1)

(3-14) ?
(t -ty o) (¢ -t;) . (t'-tj_z)(t'-tj_1) |

(tj 2-t5 ) (ty-ty 1) »J-1 (t5.2-t) (t5_1-t5) .91

Equations (3-13) and (3-14) can be simply written as
i
-s L. = '.
Ig(5=Sptiat)) = 1 (s'5,) ;?;; Tn %4,
B

RS ——

3-6
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o A e SNy - i L

2 R
if -—t-Z.O.S , and
nz‘j+]! ca

if =4 < 0.5

n, = j-2
| v

Tn is either given by (3-13) or (3-14). From (3-13) and (3-14) we can also
derive temporal derivative and integration as

5>
'3%7 [Iij u (t'-tj)] = Iij(Sl-s")nZ=n Qn ¢ip (3-16)
1
and
flij u (t -t )dt' i IiJ(S"S );‘ D ’.In (3'17)
1

where Qn and Dn can be obtained easily from (3-13) and (3-14).

3.3 Matrix Equation

Substitution of all the pertinent equations as derived above into
(2-2) yields the ot time step (i.e., t = vat).

DMV,




g i

T T e i

.-r for S, <s 5_51‘,,1.535.5'153.‘_1
R At
and ‘tv-E-tkii 2—

Note that 1 and j are used to denote the ith and jth elements while k is

used to denote the kth retarded time interval. The actual time interval

is denoted by v. The summation 3= and 3~ denote the summation process
)2 n
i

over the spatial and temporhl interpolations as given by (3-12; and (3-15).

To cast (3-18) into a matrix equation we invoke the stationary prop-
erty of (3-18) by differentiating it with respect to each nodal current at
the vth time interval and setting the resulting equations equal to zero.

Thus
F(J) L ¥ ($-R)
3 0 AA S- ?
. N, & = S-§' Gy * B,
35y ==ff211£1pk 82 G b
i=1 j=1 Ai Aj Li
1 SR
e o
¢, 3 ./; ;Dndt ;NL P o |ds'ds
J
Ns Ns
H A A
S5 (L e [T g0 B
R % 2w
121°3°1 34785 Fs = o 2 W
+ L GR) :
& m j;ZDdt ZN£ % ds'ds
Ng
‘ZZf Zn,_ g (spt)s“ds-o ' (3-19)
T Ry
n
where B TR SRR , N and
81p =0 ifis#p
=] f=p .
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The final form of (3-19) can be symbolically written as
i
[Z] (¢1\)) - (ES I t,t\))"' (F) ’ (3-20)

where [7] denotes the system matrix whose coefficients are functions of
space and time. However its time dependence is the same for every time
interval (assumed uniform). Therefore, matrix inversion is required only
once. (F) denotes a known column vector containing information from pre-
vious computation.

The boundary condition imposed here is

é5, = 0 (3-21)
where i = 1 and i = N" .

3.4 Computation of Tangents, arc Lengths and Distances for Curved Wires

The evaluations of the dot products £.5" and Q.i. the arc length s
and the distance vector R are carried out as follows:

For a given smooth curve y(u) defined by (3-1) the tangent vector at a
point p(us) on the curve is

a Sx(u) + gy(u) + gp(u e
P Yo7+ gy ()7 + g, (u)?

u = ug
and the unit normal vector 3 is given by
A
a ds

< 45 % |£§
du * P Idu (3-23)

where p = radius of curvature and g(u) are given by (3-2).

The distance along the curve between two points p(un) and p(uy) is

{
s -f‘“ '/gzz(u) +9, %) + g, 2) (3-24) |

u

2 & T
To find the distance vector R = r-r' + aa we Jet ay, ay and @, be the
direction cosines for the radial vector from the coordinate origin to a

point p(u), then the position vector r is given by:

3-9
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: ForlF] (ag X +ay ¥ +ap 2) - (3-25)
f f f,(u -
i and a ® —x'g")' Lo, s 2. 'z,(—.?‘ s
¢l |7 J |F| I

Fle 620+ 1 fw + £2w) =

et i e .

n i ey 8 ' ')A+(ra-r'a')'z\+aa
thus R = (ra,-r'a,’) x + (ra,-r'a ')y 2-r'e, . (3-27)

o

3.5 Numerical Integration

By using the FEM, the integration over the entire wire is now
reduced to a summation of integration over the individual elements. The i
integration in each element is carried out numerically by replacing the j
integration by its Riemann sum with unit-weighting coefficient. That is, ]
if we divide the ith element into N subdivisions, we have ‘

N ;
f f(s)ds = Zf(sj) AS (3-28) 1
Ai j-]

e

where A1 = the domain of the 1th element
As = the size of a subdivision

sy * the s coordinates of the center of the
jth subdivision of the 1th element.

3.6 Matrix Inversion

Since the problem is solved as an initial-value problem, it is not
necessary to invert the matrix at each time step of solution. Matrix
inversion is done only once at the first time step and the inverted matrix
is stored to be used for the following-on time steps. Thus the solution
after the first time step can be written as

(0, = [zJ"[(rs‘s | get) * (F)] (3-29)

3-10
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4. COMPUTER PROGRAM

4.0 A BRIEF DESCRIPTION OF THE COMPUTER PROGRAM

The computer program developed for this study is called "TWFEM".
It is written in the Fortran IV language. The program consists of a main
program and ten subroutines. The input to the programs are: the maximum
value of the parametric variable for the wire, the radius of the wire, the
number of elements into which the wire is divided, the size of the time
step, the final time for the run, polarization and incident angles, the
kind of incident pulse, pulse parameters, and a few control option
parameters for running the program. The output of the program is the
current distribution, the indident field strength and the segment excita-
tion on each node at each time step. Most of these outputs are stored in
a magnetic tape and can be saved for future use. Because of this, the
program can use the results of the final time step in a previous run as
the initial values for the new run. This capability is designed to save
computational time by eliminating duplicated computation. The numerical
integration 1s performed by a simple trapezoidal quadrature, and the
matrix inversion is done only once using the gaussian elimination
algorithm. To save computational time, many parameters are stored in
common blocks.

4.1 Flow Chart

The structure of the computer program is given in a flow chart as
shown in Figure 4-1. A sample .print-out is given in Figure 4-2.

4-1
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Figure 4-2. Sample of print out.
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5. RESULTS AND DISCUSSIONS

5.0 TYPES OF INCIDENT PULSES

In this study we consider four different types of incident pulses.
They are defined as follows:

(a)

(b)

(c)

(d)

Gaussian pulse

el(e) = e-P2 (t-tnax)? (5-1)

where p = spread parameter (sec")

tmax = time at which the pulse reaches maximum value
(sec)

Double exponential pulse

e-at _ -8t t 20 (5-2)

£ (t)
where a = 4.0 x 106 (sec'])

4.76 x 108 (sec™)

w
"

Rectangular pulse
Ei(t) =] Gztztp (5-3)
= 0 otherwise

where tp = pulse width (sec)

If tp is large, it becomes a unit step pulse.

Ramp pulse
()=t  o0stct, (5-4)
=1 t. <t

r —

where t. = rise time. (sec)

5-1
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5.1.1 Semi-Circular Wire (x =0, y = 0.159 cosu, z = 0.159 sinu)

.1 TRANSIENT CURRENTS

Figures 5-1 to 5-6 present the induced currents as a function of
time at the middle of a thin semi-circular wire illuminated by different
types of pulses at various angles of incidence. The parameter of the

pulses are p = 9 x 108 sec-!, tpax = 1 nsec, tp = 10 nsec and t. = 10 nsec.

The length of the wire is L = 0.5 M and the radius is given by the shape
factor Q = 22an (%) = 10. The wire is uniformly divided into 5 elements
with eleven nodes (six external and five internal). The time step is

4t = 0.167 nsec which is approximately equal to as/c. The current is
defined positive when it flow from s = 0 to s = L. Examinations of the
plots reveal many interesting points of physics concerning the transient
response of thin wire structures. For example:

(a) Even for curved wires, the current displays damped oscillations
at a dominant frequency which is close to the lowest frequency
of a straight wire of the same length.

(b) In general, the temporal development of the current along the
wire is a very complicated thing. It depends on many factors,
such as the wire length, the type of incident pulse, the
angle of incidence as well as the shape of the wire. The
build up of the current can be see as follows. First, the
current starts to build up from the end of the wire where the
incident field pulse hits initially. As time goes on, the
other part of the wire is also illuminated and the current
pulse begins to travel with the velocity of propagation to-
wards the other end. When the current pulse reaches the other
end the current pulse reverses its direction of propagation as
the current cannot flow forward any farther. This phenomenon
goes on and on until the current completely decays due to
radiation loss. At any instant of time the current is a
superposition of response due to direct excitation, reflections
along wire and scattering from other parts of wire.

(c) As shown in Figures 5-2 and 5-3, it is observed that any sudden
change in the incident pulse would induce some new charges and
in turn alter the current distribution on the wire. In the
case of the rectangular pulse whose pulse width is 10 nsec, this
sudden change occurs at the end of the pulse (ct/L = 6).

e A




;5 : (d) The reason that the second current peak is larger than the first
3 peak  in.the gaussian pulse is attributed to its relatively large
spread parameter which produces a very rapid rise and fall-off

behavior.
F; (e) For non-symmetrical excitation as shown in Figures 5-4 to 5-6,
) the reflections from both ends are not equal and also arrive
: at an observation point at different times. Therefore, the

current development is no longer dominated by the fundamental
resonant frequency but -contains higher harmonics as well.

: 5.1.2 Parabolic Wire (x = 0, y = 0.5u, z = 0.25u2)

Figures 5-7 to 5-12 show the transient currents at different positions
along a parabolic wire of length L = 0.574u and shape factor & = 10.01
under illumination by a rectangular pulse (tp = Snsec) and a double
exponential pulse. The starting time is taken to be zero when the
pulse first hits the higher end of the wire (s = L). As expected the
response of the rectangular pulse has more ripples and roughness due to
its discontinuities.

5.1.3 Helical Wire (x = 0.25 cosu, y = 0.25 sinu, z = 0.25u)

Figures 5-13 to 5-16 present the transient currents at different
locations on a helical wire of length L = 1.111M under a gaussian pulse
(p =9 x 108 sec, tmax = 1 nsec). Again it is seen that currents display
a more symmetrical oscillation pattern for points at region near the
. middle of the wire, where reflections from both ends are more equal,
than those at positions close to the ends of the wire.

5.1.4 Straignt Wires (x =0, y =0, 2 = u)

Figures 5-17 to 5-19 present transient currents on a thin straight
wire i1luminated by a gaussian pulse at three different angles of incidence.
The wire is along the z axis and the incident wave is in the y-z plane
(6 = 90° and n = 0). It is seen that the current exhipits strong
oscillation at the lowest_characteristic frequency of the wire. The
comparison between the FEM results and those obtained by using the
method of moments codetg] are also included in Figures 5-18 and 5-19.
Extremely good agreement is obtained between these two different approaches.
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5.2 CURRENT DISTRIBUTION ON THE ENTIRE WIRE

Figures 5-20 through 5-85 present the snap shot type current
distributions on the straight wire, semi-circular, parabolic and helical
wires for various types of incident pulses and angles of incidence as
discussed earlier in the previous section. These plots clearly indicate
the build-up mechanism for the transient currents on wire structures |
at each instant of time, say t = T, the current at a point on this wire
is a complicated combination of three different excitation mechanisms
evaluated in the appropriate retarded time frame. One source of
excitation is of course the direct incident field, the second is due
to reflections at ends of the wire and the third comes from scattering ,
from other part of the wire. The field near the time of arrival of the ?‘
incident wavefront is determined by its high-frequency content. However,
at later times, long after the wavefront has traversed the scatterer, the
induced currents set up oscillations at the natural frequencies of the
wire. Since the wire is in free space, leakage of energy to infinity - |
leads to damped oscillations, and the most weakly damped (probably the l
lowest mode) dominates the late time response. This implies that the
long-time response of the wire is determined primarily by its overall

size rather than its detailed shape. The opposite is true for the
early-time response.

5.3 CONVERGENCE AND COMPUTATIONAL TIME

Figure 5-86 shows the convergence test for the current at the middle
of a semi-circular thin wire of length L = 0.5 m and @ = 10. The number
of elements used in the test are 4, 5 and 6 which correspond to 9, 11 and
13 nodes. It is seen that the numerical results show a better convergence
in early time than in late time. This is understandable because at late
time the incident pulse has more or less died down and the driving source
is merely due to the smaller residual current and charge flowing along
the wire which are more sensitive to element size, -Also in an iterated
numerical solution, errorsrbropagate and accumulate as time goes on.

The step sizes used in this convergence test are chosen such that
o where At is the time step and as is the element size. The
computational time for each run depends on the number of elements and
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- the number of time steps used. A typical run in this study uses five
elements (]1 nodes) and 150 time steps and it takes about 100 sec on the
CDC 6600 machine. However, it must be noted that the computer program
has not been optimized to take into account various factors such as
structure symmetry for the broadside illumination and possible analytical
integration. Once this is done, the computational time can be reduced
further.
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6. CONCLUSION

In this study the finite element method for electromagnetic tech-

fg niques has been developed to solve transient scattering problems directly

| in the time domain. The problem is formulated in terms of a variational
time-dependent integro-differential equation which is to be solved by a
finite difference scheme in time and a finite element technique in space.
Based on this approach a computer program is written to calculate the
transient current on curved thin-wire scatterers when excited by an arhitrary
plane wave pulse. Numerical results show good accuracy and convergence for
the FEM approach. Thus, it transpires that the FEM can be a good numeri-
cal tool in solving transient electromagnetic problems. As a numerical
method for solving electromagnetic scattering problems, the FEM offers the
following advantages:

(1) Since the formulation is based on the variational princi-
ple, the solution is more stable and the error is minimized.

(2) Although the region is divided into finite elements, the
whole domain remains as a continuum because of the imposed
restriction on the continuity across element interfaces.
This is contrary to the point-matching solution used in
the method of moments where the true solution is valid
only at the matching points in the whole domain.

(3) FEM approacn is particularly useful in handling complex
geometries.

AR g
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In spite of {its advantages, the FEM-based time-domain code developed
here has two shortcomings from a numerical solution point of view. The
shortcomings are:

(1) The mathematical and bookkeeping aspects of the FEM are

involved, and

(2) The computational time seems to be longer as the code is
not optimized.

It is therefore hoped that further research work in this
area would alleviate these difficulties.
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